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Abstract
The Schrödinger equation with potential V (x) = 2λ1 cos x + 2λ2 cos αx is
considered. Its solution reduces to the problem of finding the eigenvectors of
a matrix. The eigenvalues of this matrix show a band structure which is very
sensitive to the value of the parameter α. The solutions of the Schrödinger
equation are presented, and their physical meaning is discussed. The potential
V (x) has a complex multiwell structure, and quantum tunneling occurs. The
accuracy of all approximations is carefully studied.

PACS numbers: 42.65.Wi, 42.70.Qs, 42.25.−p

There exists a lot of work on periodic systems in various contexts: partial differential equations,
solid state physics, dynamical systems, etc. The solutions of the corresponding equations are
based on the Floquet–Bloch theory.

An interesting generalization, which has been studied extensively more recently, is quasi-
periodic systems [1–3]. These systems exhibit very interesting novel phenomena which do not
appear in the periodic systems. Potential applications include quasi-crystals, electrons subject
to competing incommensurate potentials, photonic crystals, etc. Both one-dimensional and
higher-dimensional systems have been studied in this context, and in this article we are
interested in the former case.

There are many types of one-dimensional quasi-periodic systems. A lot of work has
concentrated on the study of the tight-binding Hamiltonian, which is a discrete Schrödinger
equation based on the approximation that both the potential and the electron wavefunction are
sharply peaked on the ionic sites. The nature of the spectrum (e.g. continuous, Cantor set, etc)
and the nature of the eigenfunctions (local or non-local) for this equation with various types
of the potential V (n) have been studied in the literature.

Another problem in this general context is optical transmission in structures with varying
refractive index. Liu, Macia and Barriuso et al [4–6] have studied optical beam propagation
in quasi-periodic dielectric multilayers. Hollingworth et al [7] have studied wave propagation
in media with varying refractive index in the slowly varying wave approximation. In this case,
the problem reduces to the solution of the Schrödinger equation,[−∂2

x + V (x)
]
ψ(x) = ωψ(x), (1)

1751-8113/09/202001+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/20/202001
http://stacks.iop.org/JPhysA/42/202001


J. Phys. A: Math. Theor. 42 (2009) 202001 Fast Track Communication

0 10 20 30 40

0

50

100

150

200

250

300

350

400

450

i

ω
i(0

)

Figure 1. The eigenvalues ωi(0) (i = −Kq, . . . , Kq) for the case λ1 = λ2 = 0.5, p = 1, q = 2
and for K = 5 (squares), K = 10 (circles), K = 20 (points). The results show that the truncation
of the infinite matrices at K = 5 is sufficient.

with the potential

V (x) = 2λ1 cos x + 2λ2 cos αx, (2)

which is periodic for rational values of α and almost periodic [8] for irrational values of α.
Related work has been presented in [9, 10]. The applications of these concepts to free-electron
lasers have been studied in [11].

In the present article, we study the solutions of equation (1) for the potential of
equation (2). We show that this problem reduces to the problem of finding the eigenvectors
of an infinite matrix. Numerically, we use a finite matrix, but we check very carefully that
the solutions are not affected by the truncation. The fact that the results are very sensitive
to the value of α makes necessary the careful study of the accuracy of the approximations.
We ensure that there are no significant artefacts of the truncation in the solution. We also
introduce the concept of a discretization parameter ν which defines how fine (or coarse) the
discretization is. We check that finer discretizations produce almost the same results, and
therefore we are confident that our results are very good approximations to the solutions of
the continuous differential equation in equation (1). We then study the band structure of the
eigenvalues of this system and also derive the solutions of equation (1).

For rational values α = p/q where p, q are coprime integers, the potential is periodic
with period 2πq. The Floquet–Bloch theorem states that the solution is

ψk(x) = exp

(
ikx

q

)
ψ0(x), (3)
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Figure 2. The eigenvalues ωi(k) (for all k) for the case λ1 = λ2 = 0.5 and α = 2/11, 3/16,

5/26, 1/5, 27/130, 17/80, 12/55.
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Figure 3. The eigenvalues ωi(0) for the case λ1 = 0.5, λ2 = 0.05, and for all values of p/q where
1 � p � 20 and p < q � 21.
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Figure 4. The potential V (x) for λ1 = λ2 = 0.5 and p/q = 15/31 (thick line) and p/q = 16/31
(thin line).

where ψ0(x) is a periodic function with period 2πq. The variable k takes values from 0 to 1.
A Fourier series expansion of ψk(x) gives

ψk(x) = exp

(
ikx

q

) ∞∑
n=−∞

an(k) exp

(
inx

q

)
. (4)

We insert equations (4) into equation (1) and get the matrix equation

Anmam(k) = ω(k)an(k), (5)

where n,m take values from −∞ to ∞, and

Anm =
(

n + k

q

)2

δ(n,m) + λ1δ(n − q,m) + λ1δ(n + q,m)

+ λ2δ(n − p,m) + λ2δ(n + p,m), (6)

where δ(n,m) is Kronecker’s delta. It is seen that the solution of the differential equation (1)
reduces to the problem of finding the eigenvectors of the matrix A.

We truncate the infinite A-matrix to a (2Kq + 1) × (2Kq + 1) matrix with indices from
−Kq to Kq. In this case,

ψk(x) = exp

(
ikx

q

) Kq∑
n=−Kq

an(k) exp

(
inx

q

)
. (7)
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Figure 5. The components an(0.3) of the eigenvectors for p/q = 15/31 and the lowest eigenvalue
ω0(0.3) = −1.27 (stars), and also for p/q = 16/31 and the lowest eigenvalue ω0(0.3) = −1.25
(points). In both cases λ1 = λ2 = 0.5.

We label the eigenvalues of the truncated A-matrix in ascending order as follows:

ω0(k) � ω−1(k) � ω1(k) � ω−2(k) � ω2(k) � · · · � ω−Kq(k) � ωKq(k). (8)

In figure 1, we plot the eigenvalues ωi(0) (i = −Kq, . . . , Kq) for the case λ1 = λ2 = 0.5,

p = 1, q = 2 and for K = 5, 10, 20. The results show that the truncation at K = 5 is
sufficient. Consequently, all our results below are with (10q + 1) × (10q + 1) matrices.

We have said earlier that α = p/q where p, q are coprime integers. If we take α =
νp/(νq) where ν is a positive integer, we have a finer discretization of the same continuous
differential equation. For this reason we call ν the discretization parameter. In this case, we
get the (2Kνq + 1) × (2Kνq + 1) matrix,

Anm =
(

n + k

νq

)2

δ(n,m) + λ1δ(n − νq,m) + λ1δ(n + νq,m)

+ λ2δ(n − νp,m) + λ2δ(n + νp,m). (9)

The matrix A in equation (6) is a submatrix of the matrix A in equation (9) with Aνn,νm = An,m

and with the variable k in A corresponding to νk in A. For example, the ‘q-diagonal’ (with
elements (n, n + q) for fixed q and all n) in A consists of the elements (νn, νn + νq) in the
νq-diagonal in A. In the terminology of image analysis, both matrices discretize the same
differential operator, but the A-matrix uses (2Kq)2 ‘large pixels’ while the A-matrix uses
(2Kνq)2 ‘small pixels’. Therefore, the eigenvalue ωi(k) of the A-matrix corresponds to the
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Figure 6. The sin(θi ) as a function of ωi(0.3). θi is the angle between the eigenvectors V [ωi(0.3)]
and V ′[ωi(0.3)] for p/q = 15/31 and p/q = 16/31, and λ1 = λ2 = 0.5.

eigenvalue �νi(νk) of the A-matrix. We have checked that in our examples, the difference
ωi(k)−�νi(νk) is effectively zero. This ensures that the discretization that we have considered
is fine enough for the accurate results of the continuous differential equation.

We have studied the eigenvalues ωi(k) for various values of the parameters. The results
show a band structure, i.e. there are intervals of forbidden values for ωi(k) (which we call
‘gaps’). In figure 2, we show the eigenvalues ωi(k) for all k (0 � k < 1) and for various
values of p/q which are close to each other. The results show clearly that small changes in the
parameter α produce major changes in the band structure. We note that in large eigenvalues
(ω � max(|V (x)|)), there are no gaps. Physically, large eigenvalues describe particles with
large energy for which the effect of the potential is almost negligible (they propagate almost
as free particles).

In figure 3, we present the eigenvalues ωi(0) for all values of p/q where 1 � p � 20 and
p < q � 21. We note the similarity with the ‘Hofstadter butterfly’ (which is produced for a
very different model [2]).

The potential V (x) has a complex multiwell structure. In each period (which is 2πq)
there are q wells (related to the 2λ1 cos x term) with different depths. The parameters λ1, λ2

define these depths. Physically, we expect that for the lowest energies the particle is confined
in the wells with the lowest minima, and there is very little tunneling through the walls
separating the wells. As the energy increases, the particle tunnels through the walls. At very
high energies the particle propagates almost as a free particle.
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Figure 7. The |ψ0.3(x)|2 against x for p/q = 15/31 and ω0(0.3) = −1.27 (thick broken line),
for p/q = 15/31 and ω27(0.3) = 0.95 (thick line), for p/q = 16/31 and ω0(0.3) = −1.25 (thin
broken line), and for p/q = 16/31 and ω27(0.3) = 0.97 (thin line). In all cases λ1 = λ2 = 0.5.
The solutions are periodic with period 62π . In the case of the thick broken line, the maximum
value is |ψ0.3(πq)|2 = 0.42 (not shown in the figure).

Figure 4 shows the potentials V (x) for λ1 = λ2 = 0.5 and p/q = 15/31 (thick line) and
p/q = 16/31 (thin line). Let A(k) and A′(k) be the corresponding matrices of equation (6) for
these two potentials. We call {ωi(k)} and {ω′

i (k)} their eigenvalues, correspondingly (we label
them as in equation (8)). In figure 5, we present the components an(0.3) of the eigenvectors−→a (0.3) for p/q = 15/31 and for the lowest eigenvalue ω0(0.3) = −1.27 (stars), and also
for p/q = 16/31 and the lowest eigenvalue ω0(0.3) = −1.25 (points). It is seen that small
changes in the parameter α produce large changes in the eigenvectors corresponding to the
lowest eigenvalues.

We study this point in greater detail as follows. We consider the eigenvalues ωi(0.3)

and ω′
i (0.3) with same index i. They are different from each other because the corresponding

matrices A(k) and A′(k) are different from each other. Let V [ωi(0.3)] be the eigenvector of
A(0.3) corresponding to ωi(0.3) and V ′[ω′

i (0.3)] be the eigenvector of A′(0.3) corresponding
to ω′

i (0.3). We have calculated the angle θi between V [ωi(0.3)] and V ′[ωi(0.3)] for all i. In
figure 6, we present sin(θi) as a function of ωi(0.3) for the case λ1 = λ2 = 0.5. It is seen that
the eigenvectors corresponding to the smaller eigenvalues are significantly different in the two
cases. For large eigenvalues, the corresponding eigenvectors are almost the same (sin(θi) is
small). As we explained earlier, large eigenvalues (ω � max(|V (x)|)) describe particles with
large energy for which the effect of the potential is almost negligible.
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Figure 8. The potential V (x) for λ1 = λ2 = 0.5 and p/q = 2/31 (thick line) and p/q = 3/31
(thin line).

Having the eigenvectors we can calculate the function ψk(x) of equation (7). In figure 7,
we present |ψ0.3(x)|2 for the lowest eigenvalue ω0(0.3) and also for a higher eigenvalue
ω27(0.3). For p/q = 15/31 and for the lowest eigenvalue which is ω0(0.3) = −1.27,
the potential has one global minimum (within a period), and the particle is confined in the
corresponding well (thick broken line). Due to the low energy, the tunneling through the walls
is negligible. For p/q = 16/31 and for the lowest eigenvalue which is ω0(0.3) = −1.25, there
are two wells (within a period) with the lowest minimum, and the particle is confined in these
two wells (thin broken line). We also show |ψ0.3(x)|2 for p/q = 15/31 and ω27(0.3) = 0.95
(thick line), and also for p/q = 16/31 and ω27(0.3) = 0.97 (thin line). In this case, we have
significant quantum tunneling through the walls, and the particle is spread in the whole region.
The results shown in this figure confirm that the solutions are very sensitive to the value of α.

We have also considered the potential V (x) shown in figure 8, where λ1 = λ2 = 0.5,

and p/q = 2/31 and p/q = 3/31. In figure 9, we present |ψ0(x)| for the lowest eigenvalue
ω0(0) = −1.35 for p/q = 2/31 (thick broken line), and for ω0(0) = −1.35 and p/q = 3/31
(thin broken line). We also show results for p/q = 2/31 and ω−27(0) = 0.88 (thick line), and
also for p/q = 3/31 and ω−27(0) = 0.85 (thin line). Again we see that for the lowest energy
the tunneling is negligible, and the particle is confined in the wells with the lowest minima.
For higher energies tunneling occurs, and the particle is spread in the whole region.

The study of the solutions of equation (1) is an interesting problem from both an academic
and a practical point of view. From the academic point of view, it is interesting to study
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Figure 9. The |ψ0(x)|2 against x for p/q = 2/31 and ω0(0) = −1.35 (thick broken line),
for p/q = 2/31 and ω−27(0) = 0.88 (thick line), for p/q = 3/31 and ω0(0) = −1.35 (thin
broken line), for p/q = 3/31 and ω−27(0) = 0.85 (thin line). In all cases λ1 = λ2 = 0.5. The
solutions are periodic with period 62π . In the case of the thin broken line, the maximum value is
|ψ0(πq)|2 = 0.39 (not shown in the figure).

problems where the strict periodicity required in the Floquet–Bloch theory is relaxed. Although
the potentials considered in this article are periodic (rational values of α), the study of the
sensitivity of the results to small changes in the value of α is a first step towards understanding
the case with almost periodic potentials (irrational values of α). The potential V (x) has a
multiwell structure with many wells of varying depth. For very low energies the particle is
confined in the wells with the lowest minima. As the energy increases tunneling through the
walls occurs.

From a more practical point of view, it has been explained in [4] that the study of
equation (1) is useful in the wave propagation in media with varying refractive index in the
slowly varying wave approximation. In this context, the existence of many bands in the
solutions might be useful for the practically important problem of ultradense multiplexing in
optical communications.
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